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ABSTRACT

To attempt to represent concrete properly as a composite mater-
ial, one must consider at least three phases: matrix, aggregates,
and the interfacial transition zone (ITZ), a thin shell of altered
matrix materlal surrounding each aggregate grain. Assigning each
of these phases a different transport parameter, diffusivity or con-
ductivity, results in a complicated composite transport problem.
Random walk simulations can be performed for this system, but
are time-consuming, hence the anticipated usefuilness of effective
medium theory. Previous applications of differential effective
medium theory were plagued by the need to use an arbitrary para-
meter chosen to fit the simulation results. A new kind of differen-
tial effective medium theory presented in this paper removes this
need for a fitting parameter. An aggregate particle with a sur-
rounding ITZ is mapped onto an effective particle of uniform con-
ductivity, which is then treated in usual differential effective
medium theory. The results of this theory compare favorably to
random walk simulations for muliti-scate concrete models with

varying aggregate size distributions.

1. INTRODUCTION

Concerele is a composite material, It is made up of, al
first sight, & cement paste matrix and aggregale grains of
various sizes, ranging from the very smallest sand grains
of diametler 100 pm, to the large aggregates of diameter
10 mm to 20 mm. However, upon closer examination, one
finds a thin layer of matrix material surrounding cach
aggregale grain, called the interfacial transition zone
(IT7), where the cement paste matrix is different. usually
more porous, than the bulk of the surrounding cement
paste matrix. The 117 has an average width approximately
cqual to the median cement particle size ], and arises
mainly from the “wall effect”, where cement particles are
constrained by the ageregate surface o pack less effi-
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Fig. 1 -~ A 2-D schematic view of the concrete composite problem.
The dark gray is aggregate, the black is [TZ, and the light gray
phase is the bulk matrix phase. There are only two sizes of aggre-
gates in this picture. If the width of the ITZ is 20 mm, then the
diameters of the particles are about 100 pm and 250 pm.

ciently in the ITZ [2], although other minor mechanisms
may play a role [3]. Typical widths of the ITZ are in the
range 10 pm 1o 30 ym. Fig. 1 gives a 2-D schemalic view
ol a model conecrete with two sizes of aggregate to show
the type of microstructure Vhat must be considered.

So to attempt 1o represent concrete properly as a
composite material, at least three phases must be con-
sidered, consisting of malrix, aggregates. and the IT7
regions. Assigning cach of these phases a different trans-
port paramelter, diffusivity or conductivity, then results in
a complicated composite transporl problem. Here con-
ductivity refers o either thermal or electrical conductiv-
ity. In the diffusivity problem, which is the main problem
of interest of these three w conerele {4], the ageregates
have diffusivities of zero, while the ITZ and the matrix
have in general different and non-zero diffusivities. The
langoage of conductivity will be used throughout Lhe
remainder of this paper, but the diffusivity problem is



exactly mathematically analogous, along with several
other physical problems {5, 6]. The equivalent elastic
problem is of interest as well, but is outside the scope of
this paper |7, 8].

Of course, the real problem is more complicated still.
The ITZ region in fact has a gradienl of properties, since
the porosily is a gradienl from the aggregale surface oul-
wards [2, 9, 10]. The ditute limit, with a single spherical
aggregate surrounded by a spherically symmetric gradient
of properties, can be handled exactly [11-14). But the real
microstructure of concrete, with a wide size distribution of
aggregates cach surrounded by overlapping gradicals of
properlies, is oo difficult to treat analytically, by numerical
methods, or by effective medium theory (EMT). However, il
has been shown thal a mulli-scale model can be used in
order to map this very complicated microstructure into a
simpler, but still complicated, microstructure, like that
shown in Fig. 1, where the IT7 regions can be treated the-
oretically as having uniform properties {4, 11, 15}, This
multi-scale, multi-step approach {4, 11, 15] assigns the
best value of ITZ thickness, which is the same surrounding
all aggregates, and conductivity, which is the same for all
I'TZ regions, to match the real material. Once this multi-
scale procedure has been carried oul, one ends up with a
system as shown in ¥ig. 1, where the ITZ regions have uni-
form properties.

To compute the overall conductivily of the system
shown in Fig. 1, random walk sirnulations have been per-
formed |4, 16, 17]. Uncorrelated mathematical walkers
(points) are thrown down at random, and then undergo
random walks. Walkers that initially 1and in the aggre-
gates do not move, and are nol counted. A “clock” is
maintained for each walker. The walkers move at differ-
enl speeds depending on which phase Lthey are in. The
stope of the average rool-mean-squared distance vs. time
curve is then used Lo extract the overall conductivity or
diffusivity. These are accurate and simple, bul time-con-
suming, computations. The hope is Lo use some version
of KMT to replace the random walk simulations [18]. This
is done 1o reduce the compuler lime Lthat is necessary to
cvaluate this step of the multi-scale model [15], so that
the model becomes more widely used. However, the exis-
Lenee of accurate simulations is still required in order to
validate the EMT resulls.

This idea was tested in cartier work, using a form of dif-
ferential efteclive medium theory (D-EMT). This previous
application of D-EMT [15] agreed fairly well with the ran-
dom walker computations, bul was handicapped by having
o use an arbitrary parameter that was fit 10 the result of
random walk simulations. The point of the present paper is
to derive a new kind of D-EMT that has no adjustabte para-
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meters. After introducing standard D-EMT, and deriving
this new kind of D-EMT, the results of this new D-EMT are
compared with the results of random walk computations on
various concrete models [4, 15, 16}, and are found 1o agree
beller with the simulations than did the old D-EMT results,

2. DIFFERENTIAL EFFECTIVE MEDIUM
THEORY AND EFFECTIVE PARTICLE
MAPPING

bifferential effective medium theory (D-EMT) [19-21]
/as chosen as the best candidate for the concrete prob-
lem as shown in Fig. 1 for the following reason. The accu-
racy of an EMT is often linked to how well ils percolation
properties match those of the experimental system being
considercd {17, 22]. In D-EMT, the inclusions are always
discontinous, and the matrix is always continuous. This
is the same situation for concrete, with discontinuous
aggregates ecmbedded in a continuous matrix. So it might
be expected that D-EMT would work well for concrete.
Once should note, however, that several modeling and
experimental studies have shown that in a typical con-
crete, the IT7 regions are themselves percolating [23-25].
The form of D-EMT considered in this paper will not reflect
this fact, although i will take the ITZ inlo account.
However, whether or nol percolation of a phase matters to
Lhe overall properties depends on the contrast of ils prop-
ertics with those of the surrounding phases {9, 26]. For
the case of diffusion through concrete, the ITZ property is
at most len times that of the matrix, which is not enough
of a contrast for percolation Lo matier particularly [9]. So
this deficiency in D-EMT should not significantly affect the
accuracy of D-EMT for this problem. However, if the prob-
lem of fluid permeability were being congidered [9]. where
the contrast between ITZ and matrix is on the order of
100, then most likely D-EMT would Tail, as the percolation
of the I'T7Z regions would then matter greatly. In that case,
any approach not taking ITZ percolation into account, is
unlikely 1o be accurate.

2.1 Standard D-EMT

Tn the usnal D-EMT [19-21], when a particle with con-
ductivity 6, is embedded in & matrix with conductivity
Oputie Whe dilute limit is used to generate an approximate
cquation that can be solved for the cffective conductivity.
In the dilute limit, the value of ¢, the volume fraction of
apgregales, is small cnough so that the aggregate grains
do not influence cach other. The effective conductivity, o,



is then given exactly by |5, 17]:
S
g :O-’JIIH( +0h“,kf77('+0(("-) (l)

where mois a dimensionless coeflicient. often called the
dilute limit slope or intrinsic conductivity [27] that is a func-
tion of the shape of the particle, and the ratio Op/ Opyg The
higher order terms in the ¢ expansion come from inlerac-
lions between aggregate particles, and so are negligible in
the dilute limit.

The dilute limil is now used o generate a differential

equation for the conductivity when an arbitrary amount of

aggregates is placed in the matrix. Suppose that a non-
difute volume fraction c of aggregates (of conductivity Gp)
have been placed in the matrix. The effective conductivity

of the entire composite system is now . This system of

matrix (volume fraction = ¢ = 1 - ¢) plus aggregales (vol-
ume fraction = ¢} is treated as being a homogeneous
material. Suppose then that additional aggregates are
added by removing a differential volume clement, dv, from
the homogeneous material, and replacing it by an cquiva-
tent volume of aggregates. The new conductivity, 6 + do,
is assumed to be given by the dilute limit:

<5+dcs-:cs+csm(0)~dvK (2)

where V is the Lotal volume and m{o) is the same as that in
equation (1), but with the replacement oy, — o. This is
the key approximation that is made in order to generate the
D-EMT. When the volume element dV was removed, only a
fraction ] was matrix material, so that the actual change in
the matrix volume fraction, do, is given by:

dV .

d(p:_._(p7 (3)

Equation (2) then reduces 10:

de __-do (4)

(0] mn(c)
which can be integrated to yield:
[+ @
do’ de’

- - = =1In I
J m(c')G' '[(P' ((p) )
S 1

For spherical aggregales of only one size, with conduc-
tivity 0. and embedded in a matrix of conductivily o [5],

_ (GP B G) \
m(c) = 3m(26+611) (6)

The integral in equation (5) can be done exactly, using
equation (6), with the resull:

2.2 Including the ITZ in the dilute limit

In the concrete problem, as was mentioned in thp
Introduction, cach aggregate is surrounded by a thin shell
of different material, called the 1TZ. Since any D-EMT
must be built up from the exact dilute Yimit, the dilute
limil for such a composite particle is now discussed,

Gonsider an idealized aggregate particle, like those
shown in Fig. 1. Real aggregates generally have non-
spherical shape, but for many kinds of aggregates, a spher-
ical shape is a reasonable approximation. A spherical
shape is used in the multi-scale model [4, 15]. Consider
spherical aggregate particles of conductivity Oyap and
radius b, cach surrounded by a concentric shell of thick-
ness b and conductivity 6,q,. @ = b + h, and all embedded
in a matrix of conductivity oy,y,. The left side of Fig. 2
shows these parameters pictorially. The volume fraction of
aggregate grains, not counting the IT7 regions, which are
only modified (more porous) matrix material, is still
denoted by ¢. Equation (1) is still valid, but now the slope
m for the linear term in ¢ is given exactly by [17, 28]:

(Gagg Oz )(2" 172+ Spun )
+a(cagg +20,7, )(GITZ —Opulk )
Z(Gagg ~Cyrz ){GITZ ~ Ohuik )

+a(0agg +20,7, )(GITZ +20 )41 )

| (8)

bulk N bulk o

@.

Fig. 2 — The mapping of a real particle with ITZ into an effective
particle whose radius is the radius of the real particle plus the
width of the ITZ. The figure also defines the various regions and
distances used in the paper

The parameter o is defined by the radius of the parti-
cle and the thickness of the I17:
3
(b+h)
B
When o,,, = 0. the usual case for conerete, then equa-

)
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tion (8) becomes.

[ S izl (x~1) 0,,,,,A(1+2(x)]

3
n = _— (”))
2 [6/// +0hu/k(l +~0‘)]
This slope is negative when:
(1+20) (1)
Ciry <Opup ———
AN 2((1_])

and is nonnegative otherwise. For most concrele cases,
even though usually o)1 > o the slope m is negative
when averaged over all parlicle sizes, as is discussed
next. In all cases considered in this paper, the slope m
was always negative, so there were no difficulty with
#eroes in the denominator of equation (4).

Concrete has a size distribution of aggregale grain radii
lbi}' while the value of h is essentially fixed |4, 15). That
_implics that the slope m; for each kind of particic will be a
function of by, because the parameter oy = [(b; + )/} will
be different for each particle. The aggregate size distribu-
tion is usually given by a sieve analysis characterized by d;,
fi. i=1 M+1, j=1 M, where M is the number of sieves
used, d; < d;, | are the endpoint diameters of the i-th sicve,
and fi is the fraction of the total aggregale volume that is
taken up in the j-th sicve (Zi f]- = 1). For now we assume
that all the particles in the j-th interval have the same
adius, by (d;, d4). Later on, this assumption will be
relaxed.

The dilute limil is then defined the same way, but the
slope used, <m > = % m, is first averaged over the
aggregate particle size distribution (sicve analysis)
before being used in the dilute limil formula. The slope m;
for the j-th size class is given by equation (8), bul with o
going lo:

i =(b; +h) /b;

2.3 New D-EMT

The standard D-EMT is a two-phase theory. In the pre-
sent casce. the T2 causes conceplual problems, since it
introduces a third phase. To use D-EMT in this case,
should the ITZ be treated as part of the particle, or should
it be considered as part of the matrix? If the ITZ conduc-
Livity is given independently ol the matrix, then it should
stay the same as the matrix is renormalized in the D-EMT
calculation process. However, if it is givep in terms of a
ratio with the matrix conductivity, and il the ralio stays
the same during the calculation process, then the
absolute value of the 117 conductivity will change [ 15].
The form of D-EMT previously used for the concrele prob-

lem [15] ook a weighted average between these two
extreme cases, with the weights determined by a fit 1o
random walk computations. The agreement with compu-
lations was nol speclacular (< 20%), and there was no
guarantee that the fitted weights would be the same for
att concrete systems studied.

An answer Lo the conceptual dilemma stated above
would be 1o construct a version of D-EMT in which the 1T7
regions were cither unambiguously aggregate or matrix.
This would climinate the need for adjustable parameters.
Since the ITZ regions, disregarding overlaps, are the
same shape as the spherical aggregate particles, one is
drawn to the option of making the ITZ regions part of the
ageregates. This is accomplished using the following idea:
Map each aggregate particle plus its accompanying I1TZ
region into a single effective particle, with an cffective
uniform conductivity, o,,, which is embedded in the bulk
matrix. This idea is illustrated in Fig. 2. The radius of this
cffective particle will then be 8= b; + h, rather than sim-
ply b- This procedure can be carried out by equating the
('xa(‘t resull for m;, cquation (8). to the exact result for mj
when the part,l(‘,le has uniform conductivity.

The ditute limit slope m; for a spherical particle of
conductivity Op. radius bi + h, embedded in a matrix of
conductivily oy . is given by:

( P 0hulk)

(2;,:;( +0 )

m; =3 (12)

where m; is referred to ¢, which is the volume fraction of
agereg atcs only (sec cquation (1)). This dilute limil is
referred to ¢, rather than ¢, in order to be able Lo equale
it Lo cquation (8). When this dilute limit is equated to
equation (8), the value of o, lurns out to be:

[Z(Gagy —Oy72 ) + aj(orlgg + 20177)]0/TZ

r-
[—(G“g"” ~O112)+ 0 (G0 +20 17 )]

[s)

(13)

Therefore, the ditute limit for a particle of radius b, +
h, with conductivity o, (which is a function of j), referred
to the volume fraction of aggregate ¢, is the same as for
the real particle, of radius by and conductivity 6,,,,. and
accompanying IT7 of thickness h and conductivily oy,
IFig. 3 shows this mapping hetween o, and the ITZ con-
ductivity, for four different diameter (diameter = 2 b)
aggregate particles, where 6,,, = 0, and h = 20 pm. The
dependence on the value of o and thus the particle size
can be seen clearly.

This effective particle is then treated in usual differ-
cial EMT, as described above, When an aggregate size
distribution is used, the function m{s) is an average over
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Fig. 3 — Showing the value of 6, / Oy, as a function of the value
of o1z / Gpu. for four different diameter aggregate particles (2b),
from equation (13), for h = 20 pm.

this size distribution, as was stated above. The integraf
can be done numericalty for chosen values of o, with the
aggregate volume fraction ¢ = 1 - ¢ then treated as being
a function of ¢. There are a few differences, however,
involving the effective aggregate volume fraction. Each
particle is now of radius b]- + h, so that the volume frac-
tion of “effective aggregate” now goes to ¢, not ¢. The
value of ¢ must be known in order to perform the integral
in equation (5).

These differences can he worked out simply by con-
sidering the number of particles of a certain type. IV, is
the tolal volume of the i-th kind of particle, and N; is the
total number of this kind of particle, then:

AT 74 \3
i?”(b,») =V, (14)

and therefore:
Nidno 3 Ve ~
v ) =y e
n A% (Y = fic (16)

3
where V is the total volume of the system and n; is the
number of particles of type i per unit volume.

Now the new vatues of f; and ¢, f; and ¢, are defined
via rewriting the previous equation:

n (b + h) =i (17

The values of T and ¢ can also be defined directly by:

M
=Y (b v h) (18)
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3
ny(b, + h)
STy _—:
Z”!(bi + h)
j=!
By combining the above equations, onc can then
derive forms for £ and ¢ that involve only 1, ¢, h, and o;:

’, ¢
fi=s—
>l (20)
=t
M
{21)

’ — A
= fioy
=

It should be noted that while the value of ¢ was for
non-overlapping aggregate particles, the value of ¢ is for
the volume occupied by each aggregate particle and its
surrounding 1TZ region, where the ITZ regions are
assumed Lo not overlap. In a real concrele, these ITZ
regions do overlap, causing percolation phenomena, as
was mentioned cariier. This treatment of the 177 volume
fraction is another approximation of the D-EMT method.

In summary, a -EMT calculation is carried out as fol-
lows. First the sieve analysis is used to compute ¢” and {7,
Then the integral in equation (5) is carried out numeri-
cally by Gaussian quadratures ]29], where < m > is
numerically averaged over the sicve analysis. Since the
diameter range of each sieve is rather large, the assump-
tion is made that within each sieve, the particles are uni-
formly distributed by volume, thus relaxing the assump-
tion made earlier in this paper (see Sec. 2.2) that all
parlicles in a certain siecve had the same radius. This
enables an integral to be performed over each hin, and
then a summation over all the sicves (sec Appendix 2 in
Ref. [15]). This procedure is also used to compute ¢ and
f as well. The actual FORTRAN software used to calcu-
late the D-EMT for an arbitrary sieve analysis is available
on the Internet {30].

3. RESULTS

Random walk simutation data are available for the
multi-scale concrete model for several uggregate size dis-
tributions (sieve analyses) and a number of choices of the
conductivity contrast between ITZ and matrix |4, 15]. In
these data, the aggregates always had zero conductivity
(0“gg = ()). The random walk simulation data are accurate
1o within a few percent, so they can be used 1o cheek the
results of the new D-EMT. Il the new D-EMT is able to
replace these lengthy simulations by achieving an uncer-
lainty ol 10% 1o 20%, that would be a successlul appli-



, Table 1 — Definition of four different sieve analyses
- used for the concrete systems of Table 2. The numbers
given in the table in the four righthand columns are the
volume fraction of total aggregate contained in each
j sieve (f)). Details are given in Ref. [4]

g )

| diyq (mm) | offc
0075 | 015 o
D045 | o030
030 | 060
((((( 060 | 118 |
118 | 236
| 236 | 4715
4.7574“'97.555ff 026 | 033 | 024 035
9.525 12.7 0.3 0.18 03 . 018
127 | 1905 | 006 | O | 006 | O

- along with simulation and D-EMT results (see Fig. 4)

. T T T /;
o’
04 | .
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b.g I /l )
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Bozf P -
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L ,,/’O ~
0.1 < 1 L 1 X i N
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Fig. 4 - Showing the D-EMT results for ¢ / oy, plotted against the
simulation results in Table 2. The dashed line is the line of equality.

Sieve ¢ |h{ym)|Onz/Cpu| S/Cbuik O/0Cpui | Error (%)
Analysis (simulation) | (D-EMT)
o [0753) 001 | 285 | 020 | 018 |10
cffc | 0.601| 0.03 | 4.22 0.42 042 | 00
fic |0.754| 0.03 | 2.54 | 0.28 029 | 36
fifc |0.594| 0.01 | 5.0 0.42 042 | 00
ffcc |0.602| 0.01 | 2.84 | 0.36 033 | 83
fce |0.752] 003 | 331 | 034 | 037 | 88
cfcc |0.675| 0.01 | 1.08 | 023 | 019 | 174
cfcc | 0.675] 0.01 | 1.88 | 024 | 021 | 425
cfc 10.599]| 003! 224 | 034 | 034 | 00
cfec | 0.675| 001 | 232 | 0.26 022 | 154
e |0524] 001 | 406 | 042 | 039 | 71
cfcc |0.824] 0.01| 414 | 016 014 | 125
cfec |0.757] 0.01| 494 | 023 | 021 | 87 |
| ciec | 0675 0.01 | 7.53 033 | 031 | &1 1

cation. Experimental measurements, which the multi-
scale theory hopes to predict. are probably only accurate
1o within a factor of two |4].

- Table 1 shows the values {G;} of the four different
sieve analyses used (cfce, {ffe, flee, and offe, see Ref. {4]
for details of these sieve analyses). FFig. 4 shows the
results of the new D-EMT, plotted against the data of
Tabte 2, Laken from Ref. [4]. Good agreement, 10% or
betler, is seen for most of the values, with somewhat
higher disagreement but still less than 20% for some data
points. 1L is interesting to note that most of the D-EMT
results are systematically lower than the simulation
results. ‘This is probably at least partly an arlifact of the
D-EMT calenlation. because even al fairly Tow contrast,

d; (mm) di.1 (mm) Vol. Frac. of Agg. !
- 0075 | 015 002
015 030 0.05

0.30 0.60 010 |

0.60 118 010 |
i 1.18 2.36 0105
’ 236 475 006 |
| ars 9.525 0.295

9525 12.7 0240

12.7 19.05 0.03

the percolation of the ITZ regions will have some effect.
It is also possible that the simulation results are a bit
high, which would he the case if the random walkers were
not allowed to diffuse for a long enough time. The random
walkers start out diffusing at the matrix diffusivity, and
only gmdually, through colliding with many aggregates,
do their effective diffusivity and conductivity come down
1o the concrete values. Spot checks of some of the ran-
dom walk data indicale that the random walk values
woulid become about 5% lower with more random steps
being made, which would significantly improve the agree-
ment with the new D-EMT [31].

A second set of simulation data has recently become
available 116], for models with volume fractions of aggre-
gate of 0.62 and 0.70, and a range of conductivily values
for the ITZ region, with o)/, both less than and
grcater than unity. The sieve analysis for these systems
is shown in Table 3. Table 4 shows the simulation and D-
MT data for the different concrete mixtures and para-



Table 4 - Table of parameters for different systems, along
with simulation and D-EMT results (see Figs. 5 and 6)

c | Oi1z/Opyk | O/Cbuk . D-EMT % Error
070 | 05 0168 | 0148 | 118
0.70 | 075 0.184 0.163 114
070 | 10 0498 | 0176 | 411
L 070 l 125 | 0214 0189 . 417
o070 | 15 | 0218 | o201 | 78
0.70 | 20 0237 | 0224 | 55
070 | 25 0257 | 0245 | 47
o0 30 0.278 0264 | 50
070 | 40 0.305 0.301 13
070 | 70 0393 | 0.397 10

| 070 | 100 | 0486 0.48(5' ) '1.27_

' 070 12.0 0.531 0.531 0.0

o070 [ 175 0.643 0.660 2.6

070 | 210 0.744 0.735 1.2
0.62 0.5 0.243 0216 | 111
0.62 0.75 0.258 0.231 105
062 1.0 0.275 0.244 113

| 0.62 1.25 0.279 0257 19

| 062 15 0.290 0.269 7.2

062 | 20 | 0305 | 0202 43

T 062 25 0337 | 0312 | 74

" 062 | 30 0346 | 0332 = 40
0.62 40 038 | 0368 & 47
0.62 7.0 0.450 0460 | 22 |
062 | 100 0.541 0538 . 06
062 | 120 0.591 058 08
062 | 150 0664 | 0651 @ 20 |
062 | 210 | 0773 | 0769 | 05

meter choices. Good agreement with simulation results is
shown for the D-EMT results for all paramcter values,
with the differences well below 10% for most of the data,
and only a few differences as high as 13%. It is somewhal.
curious to note that the agreement between the D-EMT
and simulation actually appears to be betler at the higher
values of oy /oy, . This is the regime where, as was
stated above, the ITZ percolation plays more of a role in
determining overall propertics.  Since the D-EMT does
not include 117 percolation, the D-EMT formula might be
expected to do worse at thése values. This phvnn%n(‘nnn
citn probably be explained by the fact that the simulation
results are probably about 5% oo high, as was alrcady
pointed oul. 1T all the simulation resufts would be
reduced by this amount, the disagreement hetween D-

94

1.0 T T i v T v T T
08 | o,/ 4
— ’d
- .
E 06 | ’93 .
L Yol
| | &
S] 09
=04 | ‘ N
3° 8
b &
©
0.2 4

0.0 1 1 N L A 1 1 1 1
0. 0.4 0.6 0.8

6/0,, (simulation)

1.0

Fig. 5 - Showing, for the concrete data given in Table 4, the D-
EMT resuits vs. the simulation results for 6 / op,,. The dashed
line is the line of equality.
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Fig. 6 ~ Showing, for the concrete data of Table 4, the overall
effective conductivity vs. the ratio of ITZ to bulk conductivity, for
Vage €qual 0.62 and 0.70.

EMT and simulation in Table 2 would he roughly constant
at about 5% to 6%,

Fig. 5 shows the D-EMT data plotied agains! the sim-
ulation data from Table 4. The dashed line is the line of
cquality. The data points are seen 1o follow the dashed
tine quite well. The D-EMT predictions are again mostly
seen o err on the small side, being slightly under the real
values. .

Fig. 6 shows the same data as in Table 4, hul now
plotled as a funclion of apyp,/op,,. separately for the 0.62
and .70 aggregale volume fraction conerele sysiems.
The D-EMT correctly caplures the shape of these curves
{16, 28].



4. DISCUSSION AND SUMMARY

One should note that the aggregate sieve analyses
given in Table 1 involve extremal values of recommended
conerete mixtures [32], while the sieve analysis given in
Table 3 is from the middle of the range recommended for
the aggregate size distributions [16, 32]. 11 is comforting
to note that the D-EMT scems to work somewhat betler
for the usual concrete mixture designs (Table 3), rather
than for unusual values (Table 1).

As was stated in the Introduction, concrete is actually
even more complicated than the three-phase system dis-
cussed in this paper, for several rcasons. First, aggre-
gales are only approximately spherical. Second, the 1T7
has a gradient of propertics extending oul to its width,
and is not a uniform property shefl [11]. And third, con-
.crete is an inleractive composite, where the amount of
aggregates affects the properties of the matrix [9, 15].
Kor these reasons, a multi-scale approach has been taken
Lo model concrete diffusivity/conductivity. In part of this
maodel, the actual ITZ microstructure near an aggregale,
as well as the global arrangement of 1TZ regions, is used
hoth to map the IT7 gradient into a uniform property
region, and to derive an accurate value of the ratio of 1TZ
to bulk matrix properties. By doing this multi-scale pro-
cedure carefully, the best value of the ITZ thickness and
conductivity are used. L is known that the ITZ thickness
and conductivily, when mapping onto a uniform property
shell, are not independent of cach other [11],

In the multi-scale model, the conductivity of the
resulting three-phase effective microstructure was com-
puted using random walk simulations. The reason for
developing an improved D-EMT was to replace these
rather lengthy random walk simulations |4, 15]. The ran-
dom walk parl is CPU lime-intensive, and a fairly simple
formula, or algorithm, which could reproduce simulation
results with an uncertainty of 10% to 20% for the usual
range of concrete mixtures studied, would be very useful.
The new D-EMT derived in this paper seems 1o {il the
requirements (uncertainly of usually 10% or betler), and
should he able 1o scrve as a routine replacement for the
random walk simulations in the multi-scale microstruc-
tural model for predicting concrete diffusivity,

ISMT is an uncontrolled approximation. in the folow-
ing sense: there is no parameter in EMT that tells the
user how much error to expect. Many limes EMT works
quite well; sometimes it fails miserably.  This paper
showed Lthat the new form of D-EMT worked quite well for
the class of problems considered.  [F a new form of con-
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crete is considered, with a quite different kind ol agere-
gate particles, then it is conceivable that the errors
incurred using the D-EMT may be significantly larger. It
will be nccessary Lo use random walk simutations Lo peri-
odically check the performance of the D-EMT equation for
new and significantly different concrete formulations.

However, the aggregates and their size distributions
in most concrete mixtures resemble those considered
here, so the D-EMT is expected to work well for most con-
crete materials encountered in current practice.
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